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Abstract 

Background. COVID-19 vaccination of healthcare and other essential workers is underway 

in many countries while immunization of the general public is expected to begin in the next 

several weeks. We consider the question of whether people who have received the vaccine 

can be selectively and immediately permitted to return to normal activities. 

Methods. We use a delay differential equation model to calculate the effects of vaccinee 

“immunity passports” on the epidemic spreading trajectories. The model incorporates age-

structuring to account for children who are ineligible for vaccination, and senior citizens who 

are especially vulnerable to the disease. We consider consensus strains of virus as well as 

high-transmissibility variants such as B1.1.7 and B1.351 in our analysis. 

Results. We find that with high vaccine efficacy of 80 percent or greater, unrestricted 

vaccinee—vaccinee interactions do not derail the epidemic from a path towards elimination.  

Vaccinee—non-vaccinee interactions should however be treated with far more caution. At 

current vaccine administration rates, it may be the better part of a year before COVID-19 

transmission is significantly reduced or ceased. With lower vaccine efficacy of approximately 

60 percent, restrictions for vaccinees may need to remain in place until the elimination of the 

disease is achieved. In all cases, the death tolls can be reduced by vaccinating the vulnerable 

population first. 

Conclusions. Designing high-efficacy vaccines with easily scalable manufacturing and 

distribution capacity should remain on the priority list in academic as well as industrial 

circles. Performance of all vaccines should continue to be monitored in real time during 

vaccination drives with a view to analysing socio-demographic determinants of efficacy, if 

any, and optimizing distribution accordingly. A speedy and efficacious vaccination drive 
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augmented with selective relaxations for vaccinees will provide the smoothest path out of the 

pandemic with the least additional caseloads, death tolls and socio-economic cost. 
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Introduction 

Over the past couple of months, four COVID-19 vaccine candidates – the ones developed by 

Pfizer/ BioNTech, Moderna, Oxford/ Astra Zeneca (also Oxford/ Serum Institute of India) 

and ICMR/ Bharat Biotech – have received emergency use authorization following rigorous 

trial procedures. These are being used in vaccination drives all over the world; currently, 

healthcare workers and essential workers or vulnerable populations are the beneficiaries, with 

vaccination of the general public being on the to-do list. The first two vaccine candidates 

(mRNA vaccines)1,2 have reported trial efficacies of almost 95 percent, the third candidate (a 

vector vaccine)3 has reported 60-90 percent (dosage-dependent), while the fourth (an 

adjuvated inactivated vaccine)4,5 has reported encouraging immunogenicity results in the 

early trials; participant enrolment for the phase 3 trial has been completed but the trial itself 

has not. In August 2020, Russia approved Sputnik 5 (a vector vaccine) bypassing some of the 

trial protocols; a recent study6 finds its efficacy to be 90 percent. Very recently, Johnson and 

Johnson (a vector vaccine)7 has reported 57-72 percent efficacy (location-dependent) while 

Novavax (an adjuvated subunit vaccine)8 has reported 60 (South Africa) to 90 (UK) percent 

efficacy; both vaccines are currently undergoing the approval process. 

Mathematical modeling studies of COVID-19 dynamics post-vaccination started emerging as 

soon as the first vaccines were approved. Swan, Goyal, Bracis et. al.9 have performed a 

detailed analysis of the roles played by different vaccine efficacy metrics. Several studies10-13 

find that vaccinating high-contact people first will have the greatest beneficial effect on the 

spread of the disease. Foy, Wahl, Mehta et. al.14 find that priority vaccination of elderly and 

vulnerable people is optimal for minimizing deaths. They also find that continuing with social 

restrictions such as six-foot separation and mask regulations during the vaccination drive will 

best mitigate the disease spread. This conclusion has been obtained in many other analyses as 

well12,15-18. Some studies however19,20 project a more optimistic outcome, permitting a 
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gradual relaxation of non-pharmaceutical interventions (NPI) starting from the fourth month 

of the vaccination drive. 

From the general public’s perspective, continued social restrictions for vaccinees may appear 

inconvenient. Those who have got the vaccine would at least hope to socialize freely with 

others who have been vaccinated as well. From an economic perspective, continuing NPI 

during the vaccination drive will amount to prolonged strain on businesses and on the 

government’s fiscal resources – any relaxation or exemption will act as a lifeline. Our quest 

here is to find such an exemption – specifically, we ask whether social restrictions can be 

immediately and preferentially relaxed for those individuals who have been vaccinated. 

Hereafter, we refer to this strategy as “selective relaxation”. To clarify, we treat a person as 

vaccinated only after s/he has received the second dose of a two-dose regimen and cleared the 

subsequent immunogenicity period.  

With ideal vaccines, the success of the selective relaxation strategy would have been a given. 

However, the actual COVID-19 vaccines are not 100 percent efficacious, which raises the 

issue of whether unrestricted (or at least significantly expanded) social activity and mobility 

on the part of vaccinees may drive the epidemic out of control. In the remainder of this 

Article, we use mathematical modeling to address this question. 

 

Methods 

We use a compartmental or lumped parameter delay differential equation model developed 

by our group21. We have selected this model because all parameters here are directly related 

to the disease or to control measures, and because it can be easily extended to accommodate 

vaccination.  
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We present here only the outline of the model, with the full equations and derivation being 

given in §1 of the Supplementary Data. Time is measured in days. We incorporate age-

structuring, defining three groups of people : Group 1 or “minors” aged 0-19, Group 2 or 

“middlers” aged 20-64 and Group 3 or “seniors” aged 65 and above (the labels “minors”, 

“middlers” and “seniors” are just for easy identification of the groups). We believe that this is 

the simplest structure which can account for the facts that (a) under-18 (entire Group 1 in our 

model) are currently ineligible to be vaccinated, (b) interaction rates among different age 

groups are highly disparate, and (c) older people are disproportionately more vulnerable to 

the disease. We have taken the population fractions from USA data22.  

The entry qij (i,j=1,2,3) of the contact matrix Q denotes the (average) number of people 

belong to Group j with whom one person belonging to Group i interacts in one day. We have 

calculated Q based on Mossong, Hens, Jit et. al.23; it is 

7·85 5·36 0·28

1·91 7·80 0·67

1·40 4·74 1·87

=

 
 
 
  

Q    . 

The spreading matrix M (mij denotes the number of Group j targets to whom one at large 

Group i case transmits the infection in one day) is obtained via multiplication of Q by a 

constant P0. This number denotes the probability that an interaction between a case and a 

susceptible target actually results in a transmission. Given Q, the reproduction number R0 is 

proportional to P0 or to M. To represent normal life we use a matrix Mh (‘h’ denotes high) 

adjusted to yield an R0 of our choice; to represent social restrictions we multiply Mh by the 

derate δ (scalar) to form the matrix Ml (‘l’ denotes low). The derate can represent a lower 

interaction rate (lockdown), lower transmission probability (masking), or (more practically) a 
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combination of the two. We have described this process in detail in §1 of the Supplementary 

Data.  

The major parameters of interest are as follows. 

• Vaccine efficacy η : We define this as the probability that the vaccine works. We 

assume that when the vaccine does work, it confers full sterilizing immunity – while 

the vaccines’ efficacy against symptomatic disease is well-known, a recent very 

important study24 has demonstrated the Pfizer vaccine to be effective against 

asymptomatic infection as well. We also assume that the vaccine confers zero 

transmissibility-reducing immunity when it does not work. 

• Viral strain : This informs the choice of the matrix Mh; we adjust it so that in the 

absence of restrictions, the disease has a starting reproduction number R0 of 3·0, 2·0 

or 5·0, corresponding to consensus25-28, low-transmissibility and high-transmissibility 

or rogue strains (such as B1.1.7 and B1.351)29,30 of the virus respectively.  

• Interaction mode : Minors are not eligible for vaccination while middlers and seniors 

are. As time goes on, more and more of the latter will get the shots and become 

eligible for relaxations. We consider two modes in which the relaxation takes place. 

In Mode 1, vaccinees resort to the high spreading rates 
h

ij
m  only with other vaccinees 

and adhere to the low rates 
l

ij
m  in all other situations, including interactions with 

minors. The latter being unvaccinated also remain subject to restrictions. This 

corresponds to an ideal mode of operation where vaccinees relax precautions such as 

six-foot separation and masking only in the presence of other vaccinees. Interaction 

Mode 1 can be realized by making proof of vaccination mandatory for admission to 

unmasked and un-distanced classrooms, conference halls, concerts, sporting events, 

cinema halls, bars, restaurants and similar venues, while keeping interventions active 
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at full strength everywhere else. Mode 2 represents a greater degree of relaxation 

where vaccinees take recourse to the high rates 
h

ij
m  with everyone, independent of 

their vaccination status. Minors are also permitted the high spreading rates when 

interacting with vaccinated middlers and seniors. Given the level of intervention 

fatigue already in society, an attempt to maintain Mode 1 might well drift closer to 

Mode 2 in reality. For both interaction modes, we choose the initial derate δ0 such that 

R0 equals unity; we then increase δ in discrete steps of δ0/20 every 50 days. 

We solve the model using numerical integration in the software Matlab. The method is 2nd 

order Runge Kutta with a time step of 1/1000 day. The spatial domain of solution is a 

Notional City of total population 3,00,000. We must seed the model with initial case and 

vaccination histories defined in the time interval t belongs to [0, 7] (days); we choose these 

functions as 75t cases among minors, 175t cases among unvaccinated middlers and 50t cases 

among unvaccinated seniors, with zero cases in the vaccinated groups; we take the vaccinee 

counts as constant function 100 in both eligible groups. We terminate the simulation run and 

declare the epidemic to be over if the region has less than one active case for fourteen 

consecutive days. Details of the initial and terminal conditions are given in the 

Supplementary Data. 

To calculate the death tolls, we have used data from O’Driscoll, Dos Santos, Wang et. al.31 

together with our population structure to obtain the mortality rates of 0·001996 percent, 

0·1376 percent and 3·335 percent for minors, middlers and seniors respectively. We are 

aware that every individual death is a tragedy, and do not seek to undermine this fact while 

presenting mortality counts as statistics, along with everything else. We assume (currently 

without quantitative basis) that mortality rates are reduced by a factor of 10 for vaccinees. 
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Results 

We start by running simulations for selective relaxation with Interaction Mode 1. Let 

vaccines be distributed at the constant rate 600/day, corresponding to vaccination of the entire 

population in 500 days. Let 90 percent of the available vaccines be allotted to seniors until 

they have been vaccinated completely, after which the entire stock is given to middlers. We 

consider three different vaccine efficacies of 60, 80 and 90 percent and the three viral strains 

mentioned in the Methods Section. In each case, we use the following metrics to calibrate the 

region’s infection control performance : (a) the time T to the end of the outbreak, (b) the total 

number X of cases at the end of the outbreak, (c) the total number D of deaths at the end of 

the outbreak and (d) the vaccination fault ratio f, defined as the maximum ratio of vaccinated 

cases to total vaccinees at any point in the outbreak and reported as a percentage. We present 

the results in Table 1.  
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Table 1 : Interaction Mode 1 

Vax Eff \ Strain Low Consensus High 

NO 

T=1000* 

X=1·39L 

D=456 

f=NA 

T=1000* 

X=1·39L 

D=459 

f=NA 

T=1000* 

X=1·39L 

D=458 

f=NA 

60 

T=434 

X=34k 

D=63 

f=0·84 

T=1000* 

X=68k 

D=73 

f=8·22 

T=511 

X=91k 

D=91 

f=17·9 

80 

T=304 

X=31k 

D=59 

f=0·34 

T=328 

X=32k 

D=61 

f=0·37 

T=354 

X=31k 

D=61 

f=0·39 

90 

T=306 

X=29k 

D=58 

f=0·16 

T=306 

X=30k 

D=59 

f=0·17 

T=308 

X=30k 

D=59 

f=0·17 

Ideal 

T=293 

X=28k 

D=57 

f=0 

T=292 

X=29k 

D=58 

f=0 

T=293 

X=29k 

D=57 

f=0 

Epidemic duration T, total caseload X, total death toll D and vaccination fault ratio f 

(percent) for three different vaccine efficacies (percent) and three viral strains. ‘NA’ denotes 

not applicable. The efficacy ‘NO’ denotes a no vaccination counterfactual – not a vaccine 
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with zero efficacy – while ‘Ideal’ denotes a 100 percent effective vaccine counterfactual. We 

have not run any simulations beyond 1000 days since we believe that predictions beyond that 

time are currently meaningless. An asterisk denotes runs which do not terminate in 1000 

days; in these instances we have reported X, D and f at the 1000-day mark. The symbol ‘k’ 

denotes thousand and ‘L’ hundred thousand. Note that 90 deaths in a population of 3,00,000 

corresponds to almost 1,00,000 deaths in USA, a very high figure. 

 

The case trajectories in the simulations of Table 1 can show either a unimodal or a bimodal 

profile. We display representative time traces of both kinds in Figure 1. 
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Figure 1 : Time traces of two situations from Table 1. The top panel shows a unimodal 

solution (one peak at t=0) while the bottom panel shows bimodal solution (two peaks). In 

each plot we display cumulative counters such as caseload and vaccinee count as lines 

associated with the right-hand y-axis and the weekly case counts or epidemiological curve 

(epi-curve) as bars associated with the left-hand y-axis. We have scaled down the weekly 
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counts by a factor of 7 so that the envelope of the bars coincides with the time derivative of 

the cumulative cases. The symbol ‘U’ denotes unvaccinated, ‘V’ vaccinated, ‘k’ thousand and 

‘L’ hundred thousand.   

 

We now repeat the exercise of Table 1 but with Interaction Mode 2. 
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Table 2 : Interaction Mode 2 

Vax Eff \ Strain Low Consensus High 

NO 

T=1000* 

X=1·39L 

D=456 

f=NA 

T=1000* 

X=1·39L 

D=459 

f=NA 

T=1000* 

X=1·39L 

D=458 

f=NA 

60 

T=1000* 

X=71k 

D=79 

f=6·19 

T=1000* 

X=89k 

D=108 

f=7·63 

T=628 

X=1·37L 

D=170 

f=13·5 

80 

T=371 

X=34k 

D=63 

f=0·49 

T=1000* 

X=65k 

D=75 

f=3·64 

T=1000* 

X=87k 

D=105 

f=5·09 

90 

T=323 

X=31k 

D=59 

f=0·21 

T=363 

X=34k 

D=63 

f=0·29 

T=1000* 

X=61k 

D=74 

f=2·34 

Ideal 

T=293 

X=28k 

D=57 

f=0 

T=292 

X=29k 

D=58 

f=0 

T=293 

X=29k 

D=57 

f=0 

Epidemic duration T, total caseload X, total death toll D and vaccination fault ratio f 

(percent) for three different vaccine efficacies (percent) and three viral strains. ‘NA’ denotes 

not applicable. The efficacy ‘NO’ denotes a no vaccination counterfactual – not a vaccine 
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with zero efficacy – while ‘Ideal’ denotes a 100 percent effective vaccine counterfactual. We 

have not run any simulations beyond 1000 days since we believe that predictions beyond that 

time are currently meaningless. An asterisk denotes runs which do not terminate in 1000 

days; in these instances we have reported X, D and f at the 1000-day mark. The symbol ‘k’ 

denotes thousand and ‘L’ hundred thousand. Note that 90 deaths in a population of 3,00,000 

corresponds to almost 1,00,000 deaths in USA, a very high figure. 

 

In Tables 1 and 2, a 60 percent effective vaccine seems to be of limited utility while a 90 

percent effective vaccine performs well almost always. This raises the question of what 

constitutes a minimum acceptable efficacy. To analyse this, we consider two different 

combinations of viral strain and interaction mode, vary the efficacy continuously between 50 

and 100 percent, and plot the resulting duration and caseload in the two panels of Figure 2.  
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Figure 2 : Caseload (left-hand y-axis) and duration (right-hand y-axis) as a function of 

vaccine efficacy for two combinations of interaction mode and viral strain. The durations 

have flat regions at 1000 days since we terminate all simulations at this time; in actuality the 

runs in these regions go on for even longer. The jump in the curves corresponds to a 

transition from a unimodal to a bimodal solution profile. The symbol ‘k’ denotes thousand 

and ‘L’ hundred thousand. 
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For a given vaccine efficacy, one way of achieving lower caseloads and accelerating the end 

of the pandemic is by increasing the vaccination rate. Considering one combination of 

interaction mode, viral strain and efficacy, we plot the duration and caseload as a function of 

vaccination rate in Figure 3.  

 

Figure 3 : Caseload (left-hand y-axis) and duration (right-hand y-axis) as a function of 

vaccination rate for a given combination of the other parameters. The duration has a flat 

region at 1000 days since we terminate all simulations at this time; in actuality the runs in 

this region go on for even longer. The knee in the curve corresponds to a transition from a 

unimodal to a bimodal solution profile. The symbol ‘k’ denotes thousand and ‘L’ hundred 

thousand. 

 

Finally, another way of improving the outcome is by reducing or forgoing the stepwise 

increments in δ every 50 days. Instead of the 5 percent increment, if we go with constant 

derate δ0 then the duration as well as caseload can reduce significantly. Considering the 

consensus viral strain, with Interaction Mode 2, the cutoff vaccine efficacy at which the 

unimodal solution breaks down is approximately 74 percent instead of 84. With the 90 



18 
 

percent effective vaccine and Interaction Mode 1, the epidemic terminates at 235 days instead 

of 306. 

 

Discussion 

We start from Figure 1, top panel. This demonstrates the desirable outcome with selective 

relaxation. Here, the disease is driven monotonically to elimination by allowing free 

interaction of vaccinees with each other while keeping tight controls on all other interactions. 

This elimination is not a “herd immunity” effect. The Figure shows that transmission levels 

are negligible post 250 days, at which time 1,50,000 people have been vaccinated, of whom 

1,35,000 are successfully immunized (vaccine efficacy is 90). Add to this the 30,000 

recovered cases and we have a total of 1,65,000 people who are immune when the 

transmission effectively halts. This amounts to 55 percent of the population, less than the 67 

percent required to achieve “herd immunity” with a virus having an R0 of 3. Rather, our 

elimination drive is a vaccine-assisted variant of the auto-containment strategy which has 

worked successfully in countries like Australia, New Zealand and Taiwan. In countries with 

denser population, higher susceptibility etc, auto-containment by itself has proved 

impossible. However, vaccine-assisted elimination is much more feasible than containing the 

disease via NPI alone. The immediate lifting of restrictions for vaccinated people enables a 

steady expansion of social and economic activities during the elimination drive. Thus, 

selective relaxation with a highly effective vaccine features society heading towards normal 

and transmission towards zero – a win-win situation.   

Figure 1, bottom panel shows a potential negative outcome of selective relaxation. Here, the 

vaccine efficacy is low so the high vaccinee—vaccinee interaction acts like a reopening 

measure. When sufficient susceptible vaccinees are available (at around t=350), the 
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reproduction number exceeds unity and there is a wave of cases. We can see that the second 

wave occurs entirely in vaccinated middlers and seniors, and in minors who again get 

exposed by these people. From a practical viewpoint, the gradual rise in weekly cases around 

the 50th week acts as a warning for an imminent second wave and signals the need for a 

stronger level of NPI. However, we would like to prevent such a situation beforehand; 

although the initial phases of the top and bottom panels of Figure 1 appear disturbingly 

similar, they have one significant difference. In the top panel, the bars corresponding to 

vaccinated cases (magenta, violet) are barely visible at any time during the initial decrease of 

cases while in the bottom panel, they are clearly present during this phase. A high prevalence 

of vaccinated cases during the initial deceleration of the pandemic can act as an early warning 

for a second wave and indicate the need for reimposing restrictions on vaccinee—vaccinee 

interactions. 

In both these plots, the periodic five percent increments in the derate δ have a nuisance value. 

As mentioned in the Results Section, these increments slow down and can even destabilize 

the elimination drive. We have implemented this feature since it is very likely that as case 

counts decrease and vaccinees receive immediate clearance, non-vaccinees are also going to 

start bending the rules. If the data shows that these excursions are having a deleterious effect, 

then the public health authorities will have to intervene; otherwise the violations can be 

ignored. 

What Figures 2-3 show is that for many vaccine-related parameters, there exists a sharply 

defined cutoff value above which the infection control performance is qualitatively similar to 

the ideal vaccine counterfactual and below which it is qualitatively similar to the no 

vaccination counterfactual (the death tolls though are much lower because the vaccine is 

highly effective against death even if not against case). The cutoff efficacy appears to be 

around 80 percent, a benchmark achieved by some of the currently available vaccine 
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candidates but not by others. The cutoff vaccination rate in Figure 3 is about 400 doses/day, 

which is an easily achievable target. Once the cutoff is achieved, additional improvements in 

vaccination performance bring about only incremental effects in the overall disease 

management.  

Finally, we have also found that varying β (the fraction of vaccines preferentially allotted to 

seniors) has a small effect on the overall case trajectories. In general, reducing β tends to 

reduce the duration and the cumulative caseload but increase the number of deaths. This is in 

line with the near-universal policy of vaccinating vulnerable people first, and it lends 

credence to the model predictions.   

The limitations of the analysis come from the various assumptions in the model. One set of 

drawbacks is common to any lumped-parameter or compartmental model. This is that when 

the absolute number of cases becomes very low, the model ceases to remain valid – the 

deterministic evolution is replaced by a stochastic process. Hence, predictions regarding the 

end-stage of the outbreak, especially the time elapsed until elimination, might not be 

accurate. This apart, we have tried wherever possible to ensure that errors either cancel each 

other or occur on the side of caution. For example, the initial conditions feature a high case 

rate but no pre-immunized people; both of these militate against an elimination bid. We have 

taken minors to be as susceptible and transmissible as adults even though some evidence32 

suggests that susceptibility and transmissibility might actually be lower for this group. We 

present a detailed discussion of the model assumptions and their effects in §2 of the 

Supplementary Data. 
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Conclusion 

In this Article, we have identified immediate and preferential relaxation of restrictions for 

vaccinees as a feasible path to the elimination of the terrible pandemic called COVID-19. 

This path features a continuous growth of economic and social activities during the 

vaccination drive. We hope that the incentive of immediate benefits will also induce people 

to get vaccinated and hence automatically combat vaccine hesitancy. With selective 

relaxation, and with current encouraging vaccine efficacies, we find a timeframe of eight to 

ten months before transmission reduces to negligible levels. 

While our primary finding and its associated message are hopeful, there are also some 

cautionary takeaways. In particular, a 60-70 percent effective vaccine does not appear to be 

adequate for issuing immunity passports. Until and unless high-efficacy vaccines are 

widespread, research on improving vaccine efficacy should be pursued at maximum priority. 

“In the field” efficacy estimations should continue for all approved vaccines, especially to 

identify socio-demographic determinants of efficacy, if any.  

In conclusion, the initiation of vaccination drives marks the beginning of the end of 

humanity’s struggle against COVID-19. Our immediate objective over the remaining few 

months of this battle has to be to minimize the caseloads, death tolls and socioeconomic 

disease burden. We hope that the prescription we have suggested here may prove effective in 

this respect. 

---- o ---- 

 

  



22 
 

Acknowledgement 

We are grateful to the anonymous Reviewer for suggesting that we replace the original 

single-component model with an age-structured model, and use it to investigate the effects of 

minors’ ineligibility for vaccination. We also appreciate the Reviewer’s directing us to 

Mossong, Hens, Jit et. al.23 for the contact matrix. 

Conflict of interest statement 

We have NO conflict of interest. 

Funding statement 

We have NOT received any funding for this study. 

Author contribution statement 

All of us have contributed equally to the manuscript. 

References 

1Polack FP, Thomas SJ, Kitchin L et. al., “Safety and efficacy of the BNT162-b2 MRNA 

COVID-19 vaccine,” The New England Journal of Medicine 383 (27), 2603-2615 (2020) 

2Baden LR, El Sahni HM, Essink B et. al., “Efficacy and safety of the mRNA-1273 SARS-

CoV-2 vaccine,” The New England Journal of Medicine (2021) 

3Voysey M, Clemens SAC, Madhi SA et. al., “Safety and efficacy of the ChAdOx1 nCoV-19 

vaccine (AZD1222) against SARS-CoV-2 : an interim analysis of four randomized controlled 

trials in Brazil, South Africa and the UK,” The Lancet Infectious Diseases (2020) 

4Ella R, Mohan VK, Jogdand H et. al., “Safety and immunogenicity of an inactivated SARS-

CoV-2 vaccine BBC152 : a double-blind, randomized phase 1 trial” The Lancet Infectious 

Diseases (2021)  



23 
 

5Ella R, Reddy S, Jogdand H et. al., “Safety and immunogenicity clinical trial of an 

inactivated SARS-CoV-2 vaccine, BBV152 (a phase 2 double-blind randomized controlled 

trial) and the persistence of immune responses from a phase 1 follow-up report,” MedRxiv 

Article (2020) available at 

https://www.medrxiv.org/content/10.1101/2020.12.21.20248643v1  

6Logunov DY, Dolzhikova IV, Shcheblyakov DV et. al., “Safety and efficacy of a rAd26 and 

rAd5 vector-based heterologous prime-boost COVID-19 vaccine : an interim analysis of a 

randomized, controlled phase 3 trial in Russia,” The Lancet Infectious Diseases (2021) 

7Johnson and Johnson, press release (2021) available at https://www.jnj.com/johnson-

johnson-announces-single-shot-janssen-covid-19-vaccine-candidate-met-primary-endpoints-

in-interim-analysis-of-its-phase-3-ensemble-trial  

8Novavax, press release (2021) available at https://ir.novavax.com/news-releases/news-

release-details/novavax-covid-19-vaccine-demonstrates-893-efficacy-uk-phase-3  

9Swan DA, Goyal A, Bracis C et. al., “Vaccines that prevent SARS-CoV-2 transmission may 

prevent a spring wave of COVID-19 cases and deaths in 2021,” MedRxiv Article (2020) 

available at https://www.medrxiv.org/content/10.1101/2020.12.13.20248120v1  

10Brueningk SC, Klatt J and Stange M et. al., “Determinants of SARS-CoV-2 transmission to 

guide vaccination strategy in a city,” MedRxiv Article (2020) available at 

https://www.medrxiv.org/content/10.1101/2020.12.15.20248130v2  

11Goldenbogen B, Adler SO, Bodeit A et. al., “Optimality in COVID-19 vaccination 

strategies determined by heterogeneity in human-human interaction networks,” MedRxiv 

Article (2020) available at 

https://www.medrxiv.org/content/10.1101/2020.12.16.20248301v1  

12Grundel S, Heyder S, Hotz T et. al., “How to coordinate vaccination and social distancing 

to mitigate SARS-CoV-2 outbreaks,” MedRxiv Article (2020) available at 

https://www.medrxiv.org/content/10.1101/2020.12.21.20248643v1
https://www.jnj.com/johnson-johnson-announces-single-shot-janssen-covid-19-vaccine-candidate-met-primary-endpoints-in-interim-analysis-of-its-phase-3-ensemble-trial
https://www.jnj.com/johnson-johnson-announces-single-shot-janssen-covid-19-vaccine-candidate-met-primary-endpoints-in-interim-analysis-of-its-phase-3-ensemble-trial
https://www.jnj.com/johnson-johnson-announces-single-shot-janssen-covid-19-vaccine-candidate-met-primary-endpoints-in-interim-analysis-of-its-phase-3-ensemble-trial
https://ir.novavax.com/news-releases/news-release-details/novavax-covid-19-vaccine-demonstrates-893-efficacy-uk-phase-3
https://ir.novavax.com/news-releases/news-release-details/novavax-covid-19-vaccine-demonstrates-893-efficacy-uk-phase-3
https://www.medrxiv.org/content/10.1101/2020.12.13.20248120v1
https://www.medrxiv.org/content/10.1101/2020.12.15.20248130v2
https://www.medrxiv.org/content/10.1101/2020.12.16.20248301v1


24 
 

https://www.medrxiv.org/content/10.1101/2020.12.22.20248707v1  

13Anita S, Banerjee M, Ghosh S and Volpert V, “Vaccination in a two-group epidemic 

model,” MedRxiv Article (2020) available at 

https://www.medrxiv.org/content/10.1101/2021.01.10.21249557v1  

14Foy BH, Wahl B, Mehta K et. al., “Comparing COVID-19 vaccine allocation strategies in 

India : a mathematical modeling study,” International Journal of Infectious Diseases 103, 

431-438 (2021) 

15Galanti M, Pei S, Yamana TK et. al., “The Importance of continued non-pharmaceutical 

interventions during the upcoming SARS-CoV-2 vaccination campaign,” MedRxiv Article 

(2020) available at https://www.medrxiv.org/content/10.1101/2020.12.23.20248784v1  

16Moore S, Hill EM, Tildesley MJ et. al., “Vaccination and non-pharmaceutical 

interventions : when can the UK relax about COVID-19?” MedRxiv Article (2020) available 

at https://www.medrxiv.org/content/10.1101/2020.12.27.20248896v1  

17Matrajt L and Eaton J, “Optimizing vaccine allocation for COVID-19 vaccines : critical role 

of single-dose vaccination,” MedRxiv Article (2021) available at 

https://www.medrxiv.org/content/10.1101/2020.12.31.20249099v1  

18Li J and Giabbanelli PJ, “Returning to normal life via COVID-19 vaccines in the USA : a 

large-scale agent-based simulation study,” MedRxiv Article (2021) available at 

https://www.medrxiv.org/content/10.1101/2021.01.31.21250872v1  

19Alvarez MM, Bravo-Gonzalez S and Trujillo-de Santiago G, “Modeling the effect of 

vaccination strategies in an Excel spreadsheet : the rate of vaccination and not only the 

vaccine coverage is a determinant in the containment of COVID-19 in urban areas,” 

MedRxiv Article (2021) available at 

https://www.medrxiv.org/content/10.1101/2021.01.06.21249365v2  

20Betti M, Bragazzi NL, Hefferman J et. al., “Integrated vaccination and non-pharmaceutical 

https://www.medrxiv.org/content/10.1101/2020.12.22.20248707v1
https://www.medrxiv.org/content/10.1101/2021.01.10.21249557v1
https://www.medrxiv.org/content/10.1101/2020.12.23.20248784v1
https://www.medrxiv.org/content/10.1101/2020.12.27.20248896v1
https://www.medrxiv.org/content/10.1101/2020.12.31.20249099v1
https://www.medrxiv.org/content/10.1101/2021.01.31.21250872v1
https://www.medrxiv.org/content/10.1101/2021.01.06.21249365v2


25 
 

intervention based strategies in Ontario, Canada as a case study : a mathematical modeling 

study,” MedRxiv Article (2021) available at 

https://www.medrxiv.org/content/10.1101/2021.01.06.21249272v1  

21Shayak B and Sharma MM, “A New approach to the dynamic modeling of an infectious 

disease,” MedRxiv Article (2020) available at 

https://www.medrxiv.org/content/10.1101/2020.10.30.20223305v1  

22www.statista.com/statistics/241488/population-of-the-us-by-sex-and-age  

23Mossong J, Hens N and Jit M, “Social contacts and mixing patterns relevant to the spread of 

infectious diseases,” PLOS Medicine 5 (3), e74 (2008) 

24Chodick G, Tene L, Patalon T et. al., “The Effectiveness of the first dose of BNT162b2 

vaccine in reducing SARS-CoV-2 infection 13-24 days after immunization : real-world 

evidence,” MedRxiv Article (2021) available at 

https://www.medrxiv.org/content/10.1101/2021.01.27.21250612v1  

25Kucharski AJ, Russell TW, Diamond C et. al., “Early dynamics of transmission and control 

of COVID-19 : a mathematical modeling study,” The Lancet Infectious Diseases 20 (5), 

553-558 (2020) 

26Liu Y, Gayle AA, Wilder-Smith A and Rocklov J, “The Reproductive number of COVID-

19 is higher compared to SARS coronavirus,” Journal of Travel Medicine 27 (2), taaa021 

(2020)  

27D’Arienzo M and Coniglio A, “Assessment of the reproduction number R0 of SARS-CoV-2 

based on the early phase of COVID-19 outbreak in Italy,” Biosafety and Health 2, 57-59 

(2020) 

28Cereda D, Tirani M, Rovida F et. al., “The Early phase of the COVID-19 outbreak in 

Lombardy, Italy,” Arxiv Article 2003.09320 (2020) 

29Davies NG, Barnard RC, Jervis CI et. al., “Estimated severity and transmissibility of novel 

https://www.medrxiv.org/content/10.1101/2021.01.06.21249272v1
https://www.medrxiv.org/content/10.1101/2020.10.30.20223305v1
http://www.statista.com/statistics/241488/population-of-the-us-by-sex-and-age
https://www.medrxiv.org/content/10.1101/2021.01.27.21250612v1


26 
 

SARS-CoV-2 variant of concern 202012/01 in England,” (2020) available at 

https://cmmid.github.io/topics/covid19/uk-novel-variant.html  

30Pearson CAB, Russell TW, Davies NG et. al., “Estimates of severity and transmissibility of 

novel South Africa SARS-CoV-2 variant N501Y.V2,” (2021) available at 

https://cmmid.github.io/topics/covid19/sa-novel-variant.html  

31O’Driscoll M, Dos Santos GR, Wang M et. al., “Age-specific mortality and immunity 

patterns of SARS-CoV-2,” Nature 590 (7844), 140-147 (2021) 

32Davies NG, Klepac P, Liu Y et. al., “Age-dependent effects in the transmission and control 

of COVID-19 epidemics,” Nature Medicine 26 (8), 1205-1211 (2020) 

https://cmmid.github.io/topics/covid19/uk-novel-variant.html
https://cmmid.github.io/topics/covid19/sa-novel-variant.html


 
1 

 

SUPPLEMENTARY DATA  

to “COVID-19 spreading dynamics in an age-structured 

population with selective relaxation of restrictions for 

vaccinated individuals : a mathematical modeling study” 

by B Shayak, Mohit M Sharma and Anand K Mishra 

 

In this Supplement we cover several issues which could not be treated in the 

Article proper due to lack of space. Throughout, a figure or table numbered 

“n” always refers to the Article proper while a figure or table numbered “Sn” 

refers to this document. The same holds for References. Since labelled display 

equations exist in this Supplement alone, we have tagged them with numbers 

only and no “S” prefix. 

---- o ---- 

 

 §1  MODEL DERIVATION AND EQUATIONS 

We begin with a very brief recap of the model proposed in our prior work 

[21]. 

 

RECAPITULATION 

Like every lumped-parameter or compartmental model, ours is applicable in 

any region with homogeneous mixing among its inhabitants, such as a 

neighbourhood, town, village, or smaller city. Metropolitan cities may need 

to be partitioned into several regions, depending on internal connectivity. The 

model treats the transmission of disease as a process of interaction between 

at large cases and susceptible targets; its underlying philosophy is 
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Rate of emergence Per-case spread- Probability of Number of

of new cases ing rate target susceptibility at large cases
=  

       
       
       

  . (0) 

 

Defining y (t) as the cumulative case count, the left hand side above is dy/dt. 

The per-case spreading rate, which we call m0, is the product of two quantities 

– the rate q0 at which a random person (and hence an at large case who is 

unaware of infectious nature) interacts with other people, and the probability 

P0 that an interaction with a susceptible target results in a transmission. q0 is 

governed by the degree of social restrictions in place while P0 is determined 

by masking and sanitization; collectively, m0 embodies the effects of non-

pharmaceutical interventions [21]. q0 happens to be available as a parameter 

from Literature; this fact will play an important role later. The target 

susceptibility probability factors in the immune response to the disease; with 

permanent immunity (and some plausible approximations), it takes the form 

1 − y/N where N is the region’s total population. The number of at large cases 

has the following mathematical expression : 

 
( )( ) ( ) ( )3 1 3 2

1 3 1

( ) 1 ( ) 1 ( )

( )

n y y y y t T y y t

y t

μ μ μ τ

μ μ τ

= − − − − − − − −

− −
   , (1) 

where μ1 is the fraction of cases who are asymptomatic, μ3 is the fraction of 

cases who escape from contact tracing, T is the time for which contact traced 

cases remain at large, τ1 is the time for which untraced asymptomatic cases 

remain transmissible and τ2 is the time for which untraced symptomatic cases 

remain transmissible and at large before manifesting symptoms and (at least 

so we assume) seeking quarantine. 

Putting all this together, we arrive at the retarded logistic equation 

 0

d
1 ( )

d

y y
m n y

t N

 
= − 

 
   , (2) 

as the final form of the one-component epidemic model without vaccination. 

Equation (2) uses delays rather than inverse-rates to express infection 

durations, which enables it to make very realistic predictions. For further 

details of derivation, we must refer to our prior study [21]. 
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ONE-COMPONENT VACCINATION MODEL 

Here we add vaccination without age-structuring to the basic model (2); once 

this is done, the age-structured model will follow easily. We define three 

dependent variables : y (t) the cumulative count of corona cases among un-

vaccinated people, z (t) the cumulative count of cases among vaccinated 

people and v (t) the total number of vaccinated people. We now use the logical 

structure (0) to formulate the evolution equations for the disease; for 

conceptual clarity, we permute the terms on the right hand side as follows :  

Rate of emergence Probability of Per-case spread- Number of

of new cases target susceptibility ing rate at large cases
= 

       
       

       
 . (3) 

In this layout, the two terms featuring cases rather than targets are adjacent 

to each other. 

We start from the interaction rates. In the most general case, there will be 

four interaction rates : Qa the number of non-vaccinated people (targets) with 

whom one non-vaccinated person (and hence such an at large case) interacts 

each day, Qb the number of non-vaccinated targets with whom one vaccinated 

case interacts each day, Qc the number of vaccinated targets with whom a 

non-vaccinated case interacts each day and Qd the number of vaccinated 

targets with whom a vaccinated case interacts each day. We have used capital 

Q rather than small q for a reason which will become apparent shortly, and 

have used superscripts for a,b,c,d rather than the more conventional subscripts 

for a reason which will emerge in the next Subsection. Qb and Qc are not 

necessarily equal; if a vaccinated person visits the houses of her ten 

unvaccinated friends who themselves remain confined at home then that 

contributes 10 to the vaccinee’s Qb but only one to each of the non-vaccinees’ 

Qc.  

Next, we argue that Q should be proportional to the total fraction of target 

population present i.e. Qa and Qb should be proportional to the total fraction 

of non-vaccinees while Qc and Qd should be proportional to the total fraction 

of vaccinees. To understand this, let us say Alfa is a vaccinee and she visits 

10 friends per day. If the vaccine coverage is 20 percent then on average 8 of 

these friends will be unvaccinated and 2 vaccinated, so Qc for Alfa will be 8 

while Qd for her will be 2; if on the other hand vaccination coverage is 80 

percent then Alfa’s Qc will be 2 and her Qd will be 8. Since the population 

fractions of vaccinees and non-vaccinees change continuously, this 
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dependence adds a time-varying component. We express this explicitly, 

writing 

 
, ,a b a bN v

Q q
N

−
=    , (4a) 

 
, ,c d c dv

Q q
N

=    , (4b) 

so that the qi’s become interaction parameters which can be obtained from 

Literature. Finally, we multiply each qi by the transmission probability Pi to 

form the four spreading rates ma, mb, mc and md. The Pi’s need not be the same 

for the four interaction types, since there might be heterogeneities in masking, 

handwashing etc. 

To calculate the number of at large cases, we take the asymptomatic fraction 

μ1 = 4/5. We also take the contact traced fraction to be zero so that μ3 = 1. In 

Ref. [21] we have shown that contact tracing can capture only a small 

percentage of total cases if the asymptomatic fraction is high; moreover, 

contact tracing is managed by healthcare professionals many of whom are 

now re-deployed to vaccination drive. We use the parameter values [S1] 

τ1 = 7 and τ2 = 3, so that the function n gets defined as 

 ( )
1 4

( ) ( 3) 7
5 5

n x x x x= − − − −    . (5) 

We assume that vaccinated cases have the same μ1, τ2 and τ1 as non-

vaccinated ones (consequences of this come in §2), so that we can use this 

function n to count at large cases of both unvaccinated and vaccinated groups.  

Now let us use (3) to formulate the equation for y (t), the unvaccinated cases. 

At any time, the total number of vaccinees is v and the total number of non-

vaccinees is N − v. In this work, we assume that the disease as well as the 

vaccine confers permanent immunity (the disease with 100 percent 

probability and the vaccine only in those instances where it works), an 

assumption discussed in detail in §2. An unvaccinated person can be 

insusceptible only if s/he has already contracted and recovered from the 

disease; at any time the total number of recoveries (modulo the 

approximations of the previous Subsection) is y, the total number of non-

vaccinees is N − v and so the probability that a random non-vaccinee is 

susceptible is (N−v−y)/(N−v), which is 1 − y/(N−v).  
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Cases arise in the unvaccinated group as a result of interactions whose targets 

are non-vaccinees, hence the relevant m’s in the y equation will be ma and mb. 

We multiply ma by the total number of at large unvaccinated cases and mb by 

the total number of vaccinated cases, add the two and remember to account 

for the factor (N−v) / N from (4a) in the actual interaction rates which are Q 

rather than q. Putting all this together, we have  

 
d

1 ( ) ( )
d

a by N v y
m n y m n z

t N N v

−   = − +  − 
   , (6) 

our first equation.  

Similarly we can use (3) to formulate the equation for z (t). By the model 

assumptions, the vaccine confers sterilizing immunity with probability η, so 

at any time, the number of insusceptible vaccinees is ηv and the number of 

susceptible vaccinees is (1−η)v. Among the latter, z people have contracted 

and recovered from the infection so they are insusceptible as well. Hence, the 

total number of susceptible vaccinees is (1−η)v − z and the susceptibility 

probability is this divided by v, which is 1−η − z/v. The fraction (N−v)/N in 

(6) will now get replaced by v/N; moreover the terms ma and mb will get 

replaced by mc and md since the target is a vaccinee. This yields  

 
d

1 ( ) ( )
d

c dz v z
m n y m n z

t N v
η

   = − − +   
   . (7) 

 

Finally, we need an equation for v. We assume that vaccination takes place 

at a constant rate α (people/day). The longest that the vaccination drive can 

continue is until all non-vaccinees have turned into either cases or vaccinees 

i.e. when y + v equals the total population. Thus, we have 

 
  if  d

0  otherwised

y v Nv

t

α + 
= 


   . (8) 

The stopping condition assumes that everyone is willing and able to receive 

the vaccine, which is sufficient for this single-population model.  

Equations (6-8) constitute the one-component vaccination model; we now 

extend it to account for age-structuring.  
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AGE-STRUCTURED VACCINATION MODEL 

As discussed in the Article proper, we consider three age groups (a) Group 1 

aged 0-19 or “minors”, (b) Group 2 aged 20-64 or “middlers” and (c) Group 

3 aged 65+ or “seniors”. Minors cannot be vaccinated so these cases account 

for a single dependent variable; in the other two categories we need three 

variables each corresponding to unvaccinated cases, vaccinated cases and 

vaccinees. Let the variable y1 denote minor cases, y2 unvaccinated middler 

cases, z2 vaccinated middler cases, v2 vaccinated middlers, y3 unvaccinated 

senior cases, z3 vaccinated senior cases and v3 vaccinated seniors. Let N1, N2 

and N3 denote the total populations of minors, middlers and seniors 

respectively. 

So far as parameters are concerned, the Literature yields nine interaction rates 

qij denoting the rate (per day) at which a person belonging to group i interacts 

with people belonging to group j. This can be converted to mij via 

multiplication by a relevant probability. Then, each mij can have a different 

value depending on whether the interacting cases and targets are vaccinated 

or otherwise. Once again, we use the superscripts a,b,c,d as in (6,7) to denote 

the different possibilities. m11 has only one value because all minors are 

unvaccinated; mi1 or m1i can have two values depending on the vaccination 

status of the adult while mij for i,j = 2,3 can have four values each. 

In addition to the vaccination rate α, we now need another parameter β 

(introduced in the Article proper) denoting the fraction of vaccines 

preferentially allotted to seniors. We assume that at the start of the 

vaccination drive, βα vaccines per day are distributed to seniors and (1−β)α 

vaccines per day to middlers. When any of the groups reaches saturation, all 

α vaccines are then diverted to the other group. 

Given this, we can present the vaccination model. We have 

 
11 1 21 2 21 21 1

1 31 3 31 3

( ) ( ) ( )d
1

d ( ) ( )

a b

a b

m n y m n y m n zy y

t N m n y m n z

 + + 
= −   

+ +   

   , (9a) 
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1
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m n y m n y m n zy N v y
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( ) ( ) ( )d
1
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b c d

c d

m n y m n y m n zz v z

t N v m n y m n z
η

 + + 
= − −   

+ +   

   , (9c) 
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d
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d

0  otherwise

y v N y v N
v
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t
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α
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
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  if    and  
d

  if    and  
d

0  otherwise

y v N y v N
v

y v N y v N
t

βα

α

+  + 


= +  + =



   . (9g) 

This is the equation set we simulate in the Article proper. We now describe 

the derivation of the various parameter values used in the simulation runs. 

 

PARAMETER DERIVATION 

The first raw material we need for this is a population dataset. As a 

representative population, we use recent data from USA [22], which has a 

total population of 328·2 millions. In Table S1, we show the total number of 

people in various age brackets, together with some percentage compositions. 
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Group Age 
Population 

(millions) 

Age : Group 

(Percent) 

Group : Total 

(Percent) 

1 

0-4 19·58 23·99 

24·87 
5-9 20·19 24·73 

9-14 20·80 25·48 

15-19 21·06 25·80 

2 

20-24 21·63 11·23 

58·66 

25-29 23·50 12·21 

30-34 22·43 11·65 

35-39 21·73 11·29 

40-44 19·92 10·35 

45-49 20·40 10·60 

50-54 20·48 10·64 

55-59 21·87 11·36 

60-64 20·57 10·68 

3 

65-69 17·46 32·29 

16·47 

70-74 14·03 25·95 

75-79 9·65 17·85 

80-84 6·32 11·69 

85+ 6·61 12·22 

Table S1 : Demographics of the USA population [22]. The first three columns are self-

explanatory. The fourth column shows the population of the concerned age bracket as 

a percentage of the total population of the group, for example age 0-4 accounts for 

23·99 percent of the total population of Group 1. The fifth column shows the population 

of the group as a percentage of that of the whole country. 

 

Extrapolation from this dataset to the Notional City of population 3,00,000 

has yielded N1 = 74,610, N2 = 1,75,980 and N3 = 49,410. 

The next piece of raw material required is the contact matrix. For this we 

have used data from Ref. [23]. The authors of this study have conducted a 

survey to calculate the average number of people belonging to one age group 

with whom one person belonging to another age group interacts each day. 

This is of course qij except that Ref. [23] uses the 5-year age bands from Table 

S1 to generate a 15×15 contact matrix (it treats 70+ as the last bracket), while 

we need a 3×3 matrix. Ref. [23] reports on surveys conducted in different 

countries; we use the UK as an example since the mean interaction rate there 
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is very close to the mean over all the considered countries. Specifically, we 

use the data from Table S8.4a in the Supporting Information of Ref. [23].  

We demonstrate the reduction of contact matrix from 15 square to 3 square 

using one example – the contact rate q11. First, we reproduce a part of Table 

S8.4a of Ref. [23] as Table S2 below. 

Target\Case 0-4 5-9 10-14 15-19 

0-4 1·92 0·65 0·41 0·24 

5-9 0·95 6·64 1·09 0·73 

10-14 0·48 1·31 6·85 1·52 

15-19 0·33 0·34 1·03 6·71 

Table S2 : An extract from Table S8.4a of Ref. [23]. It shows the average number of 

daily contacts (“targets”) belonging from different age groups along the columns, as 

reported by each person (“case”) belonging from different age groups along the rows.   

 

As per Table S2, a case aged 0-4 interacts every day with 1·92 targets aged 0-

4, 0·95 targets aged 5-9, 0·48 targets aged 10-14 and 0·33 targets aged 15-19. 

All these are Group 1 targets, so we can simply add along the column to find 

that a case aged 0-4 interacts with 3·68 Group 1 targets every day. Similarly, 

adding along the other columns yields that a case aged 5-9 interacts with 8·94 

Group 1 targets, a case aged 10-14 interacts with 9·38 Group 1 targets and a 

case aged 15-19 interacts with 9·20 Group 1 targets every day. Now, to obtain 

the Group 1—Group 1 interaction rate, we must weight these numbers by the 

population fractions from column 4 of Table S1 and add them up. This yields 

q11 = 7·85. This tedious operation repeated over all groups yields the contact 

matrix which we have displayed in the Article proper and reproduce here for 

clarity : 

 

7·85 5·36 0·28

1·91 7·80 0·67

1·40 4·74 1·87

 
 

=
 
  

Q    . (10) 

Again, this matrix is not expected to be symmetric – consider a 25-year old 

nurse visiting ten 80+ year-olds in an assisted living facility. We assume that 

contact reductions (for example lockdown) take place in such a manner as to 

reduce all elements of Q by the same factor. 
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The next parameter to account for is the raw transmission probability P0, in 

the absence of masking or other interventions. This is difficult to measure a 

priori so we shall obtain it indirectly, by tying it up to the reproduction 

number R0 of the disease, which is a measurable quantity [25-28]. The direct 

calculation of R0 from the system (9) is a hair-raising task, but we can get the 

value from a qualitative argument.  

R0 is defined as the number of people whom one case infects on average when 

everyone is susceptible and there are no external interventions. The first row 

of Q yields that a Group 1 case interacts with 7·85+5·36+0·28 = 13·49 targets 

every day; he transmits the disease to 13·49P0 of them. Similarly, a Group 2 

case transmits the disease to 10·38P0 people every day and a Group 3 case 

transmits to 8·01P0 people every day. At the start of the outbreak, we assume 

that cases occur in the three groups in proportion to their populations; 

weighting the groups’ contributions by the percentages in the fifth column of 

Table S1 and adding yields that one case transmits to 10·76P0 targets per day 

on average. By the model assumptions, 80 percent of all cases are 

asymptomatic and transmit for 7 days while 20 percent are symptomatic and 

transmit for 3 days, so that an at large case transmits for 31/5 days on 

average. Thus, a case transmits the disease on average to (10·76P0) × (31/5) 

people which is 66·71P0 people. Hence we claim R0 = 66·71P0.  

Having obtained this expression by crook rather than by hook, we must check 

its validity by numerical simulation of (9). If the condition is correct, then the 

epidemic ought to take off if P0 > 1/66·71 and die down otherwise. Simulating 

with different initial conditions, we find that the transition occurs at a P0 value 

of about 96-99 percent of the calculated one. Hence our expression for R0 is 

correct and we can use it to define P0 as  

 0
0

66·71

R
P =    . (11) 

 

For normal life, R0 can be 2, 3 or 5 depending on the viral strain, and the 

corresponding P0 is obtained through (11). We define  

 0
h P=M Q    , (12) 
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as the matrix of the spreading rate mij’s during normal life. During pandemic 

life, each mij can have upto four values as we can see from (9); to simplify the 

parameter space we define the matrix  

 l hδ=M M    , (13) 

where the derate δ lies between 0 and 1, and stipulate that k
ijm  (k = a,b,c,d) can 

be either l
ijm  or h

ijm  and nothing else. The deration takes care of contact 

reduction as well as transmission probability reduction through measures 

such as masking. Thus, for low-transmissibility strain we use the values 

P0 = 2/66·71 and the initial derate δ0 = 0·489, for consensus strain we use 

P0 = 3/66·71 and δ0 = 0·327 and for rogue strain we use P0 = 5/66·71 and 

δ0 = 0·196. These values of δ0 were chosen so as to keep the case rate curve 

closest to horizontal during the initial week or so of the vaccination drive.  

Finally, we explain how we implement the two interaction modes in the 

analysis. For Mode 1, we choose 

 

 11 11 21 21 21 31 31 31

12 12 12 22 22 22 22 22 22

32 32 32 32 32 32

13 13 13 23 23 23 23 23 23

33 33 33

          

     ,  

,  

     ,  

l a b l a b l

a b l a b c l d h

a b c l d h

a b l a b c l d h

a b c

m m m m m m m m

m m m m m m m m m

m m m m m m

m m m m m m m m m

m m m m

= = = = =

 = = = = = = 
 

= = = =  

= = = = = =

= = = 33 33 33,  l d hm m

  
 

=  

   , 
(14) 

while for Mode 2 we choose 

 

 11 11 21 21 21 21 31 31 31 31

12 12 12 12 22 22 22 22 22 22

32 32 32 32 32 32

13 13 13 13 23 23 23 23

     ,       ,  

,       ,  

,  

,       ,  

l a l b h a l b h

a l b h a c l b d h

a c l b d h

a l b h a c l b

m m m m m m m m m m

m m m m m m m m m m

m m m m m m

m m m m m m m m m

= = = = =

 = = = = = = 
 

= = = =  

= = = = = 23 23

33 33 33 33 33 33,  

d h

a c l b d h

m

m m m m m m

 = 
 

= = = =  

   . 
(15) 

Equations (14,15) look much more cumbersome than the concepts which 

they embody. 

For the groupwise mortality rate, we use data from Ref. [31]. Table S3 in the 

Supplementary Information of this paper gives the mortality rates for the age 



 
12 

 

brackets considered in Table S1 here; we weight them by the percentages in 

the fourth column of this table to obtain the mortality rates used in the text.  

Our final concern is with the initial and terminal conditions. We have chosen 

the initial conditions to generate a steady 300 cases/day for the first seven 

days, with cases divided among the three groups approximately in proportion 

to their population; this amounts to a daily case rate of 1/1000th the total 

population and is very high. For termination condition, we define the active 

case count at time t to be  

 
1 1 2 2 2 2

3 3 3 3

( ) ( ) ( 14) ( ) ( 14) ( ) ( 14)

( ) ( 14) ( ) ( 14)

a t y t y t y t y t z t z t

y t y t z t z t

= − − + − − + − −

+ − − + − −
   , (16) 

and stop the run if a(t) < 1 for 14 consecutive days. 

---- o ---- 

 

 §2  MODEL ASSUMPTIONS AND THEIR EFFECTS 

Here we discuss some of the assumptions and approximations inherent in the 

model and the effects which they have on the results. For assumptions built 

into in the baseline model (2), we cite Ref. [21]; here we consider only the 

approximations involved in extending (2) to form (9). 

Vaccine immunity : As mentioned in §1, we have assumed that vaccine 

confers sterilizing immunity – i.e. complete immunity against contraction, 

symptoms and transmission of COVID-19 – with probability η and zero 

immunity against contraction and transmission with probability 1−η. 

Currently, the Pfizer and Moderna trials [1,2] have focussed only on 

reduction of symptomatic infections although, as we have mentioned in the 

Article proper but see no harm in repeating, a recent study from Israel [24] 

has found that Pfizer is highly effective against asymptomatic cases as well. 

The Oxford vaccine [3] has included asymptomatic cases in the phase 3 

analysis and found only a 30 percent reduction in asymptomatic infections in 

the vaccine group relative to the placebo group (compared to a 60 percent 

reduction in symptomatic infections). However, the absolute number of 

asymptomatic cases detected in this study is quite small and more data needs 

to be collected on this issue.   
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If the Oxford results are indicative of a general trend, then our assumption of 

equal efficacy against asymptomatic and symptomatic infection will result in 

an undercounting of cases since our model will yield fewer asymptomatic 

vaccinated cases than reality. This is counterbalanced by our assumption that 

vaccinated cases have the same transmission properties (transmissibility and 

duration) as unvaccinated ones. It is possible (and intuitive) that vaccine cases 

will actually have lower viral loads and faster recovery period, which will 

cause reality to undershoot the model prediction. Indeed, a second study from 

Israel [S2] reports positive news on this front. It finds that cases who have 

contracted the disease 12-28 days after receiving the first dose of Pfizer 

vaccine feature a fourfold reduction in viral load compared to unvaccinated 

cases. To the best of our knowledge, so far, there is nowhere near enough 

information which can enable us to accurately determine more appropriate 

parameter choices. However, when such information does become available, 

it will not be difficult to incorporate it into the model by changing the values 

of η and of μ1, τ1, τ2 and the m’s for vaccinated cases.  

While calculating the death tolls, we have assumed that vaccination reduces 

the mortality rates by a factor of ten. Currently, a value for this factor is 

unknown; all that is known is that in the phase 3 trials of any of the vaccines 

developed so far, there have been zero COVID-19 deaths in the vaccine 

groups.  

A further assumption we have made is that the immunity conferred by the 

disease as well as the vaccine is permanent. This assumption is valid so long 

as the immunity duration is longer than the evolution time of the outbreak, 

which is less than a year in the unimodal solutions that we have obtained. 

For the disease itself, antibodies as well as cellular immune responses do seem 

to be durable over at least a 6-7 month period, the longest studied so far (a 

mini-review of literature on this topic appears in Ref. [S3], while Ref. [S4] is 

a recent update). As for the vaccine, Moderna [S5] and ICMR/BB [5] have 

reported durable immune responses for at least 3 months, with the titre 

profiles being similar to those generated by symptomatic COVID-19 

infection. Time alone will tell us the durability of vaccine immune response, 

but so far we see no reason to deviate from the permanent immunity 

assumption. Note however that the bimodal solutions obtained with selective 

relaxation last indefinitely, and how the immunity business will play out in 
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that scenario is anybody’s guess. We hope that in reality we shall not have to 

see the ugly face of the bimodal solution.  

Initial and terminal conditions : The assumption that there are zero pre-

existing cases at the start of the vaccination drive is an underestimate; in some 

regions at least, a significant fraction of the population has already been 

immunized. In other regions however, the immunized fraction might not be 

too large. Pre-existing recoveries can influence the case trajectories in two 

ways : (a) for given interaction parameters, it can make the actual 

reproduction number lower than the model and hence terminate the epidemic 

faster and with lower caseload, (b) it can achieve the reproduction numbers 

of our simulations at higher levels of mobility and hence equal our infection 

control performance at a lower level of intervention. The high initial case rate 

will tend to generate a large number of vaccine cases at the start and push up 

the vaccine fault ratio. Thus, both the starting case count and case rate are 

chosen to generate a maximally unfavourable scenario. The assumption of 

100 pre-existing middler and senior vaccinees has no impact other than to 

prevent division by zero when calculating the fault ratio. 

The terminal condition of less than one active case for a sufficiently long time 

is an eminently plausible measure of the true end of the outbreak. The number 

14 (twice) in the definition of the condition might appear somewhat arbitrary. 

The choice is harmless since changing that number changes the cumulative 

case counts by minuscule amounts. At any rate, when the absolute number 

of cases is very low, a lumped-parameter model breaks down. All that one 

can talk about are probabilities, and for that one needs an agent-based model. 

Our model (and any other differential equation model) is good only for 

predicting when transmission will have become significantly reduced, and for 

that any physically plausible termination condition is adequate. We expect 

that the stochastic tail-phase of the outbreak will not add too many cases to 

our calculated totals; however it might prolong the epidemic significantly. 

Vaccination fault ratio : The question we want to address is “If I receive the 

vaccine and party with other vaccinees, what is the probability that I shall 

actually contract the disease during the evolution of the outbreak ?” The guess 

answer 1−η is a gross overestimate. To see this, consider an individual 

vaccinee, whom we call Bravo. Vaccine efficacy of 90 percent implies 10 

percent failure probability which does not sound very small. However, 10 
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percent is the probability that Bravo catches the disease given an exposure. 

Transmission is a two-person process – if Bravo interacts only with other 

vaccinees, then the probability that they have the disease and can expose 

Bravo to the pathogen also reduces to (approximately) 10 percent. Bravo’s 

total contraction probability therefore reduces to approximately 1 percent i.e. 

the disease contraction probability is quadratic and not linear in the vaccine 

failure probability. This argument is slightly hand-waving in character but it 

does convince us, independent of the maths, that the contraction probability 

will be much lower than the complement of the efficacy. 

There is no single metric in fact which can help us to answer the above 

question. An approximate indicator will be the ratio of the total number of 

vaccinated cases to the total number of vaccinees. However, this index will 

be artificially lowered by the fact that during the tail-phase of the epidemic, 

there are hardly any new cases but lots of new vaccinees. Hence we have 

opted to evaluate the ratio at every point during the disease evolution and 

report its maximum value as the vaccination fault. It is comforting that for 

the unimodal solutions, the fault evaluates to less than 1 percent.  

Details of structuring : Here we used a social structure based on contact rates 

in UK superposed on demographics of USA. The question arises as to what 

extent the results are dependent on the choice of structuring. Moreover, 

instead of three age groups, suppose we had used say five or fifteen, then 

would the results have been different ? 

To answer this question, we consider the unstructured model (6-8) and 

compare its predictions with those of (9) for the same parameter values. For 

the first scenario, we take Mode 1, consensus strain. To achieve this, we use 

ma
 = mb

 = mc
 = ml

 = 0·163 and md
 = mh

 = 0·489 in (6-8) [a simple calculation 

along the lines of that in §1 here provides these values]. We again increment 

ml in steps of 5 percent every 50 days. With 90 percent vaccine efficacy, we 

find that the epidemic ends in 205 days with 16,000 cases and a vaccination 

fault ratio of 0·18 percent. The time trace of evolution is shown in Figure S1 

below. 
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Figure S1 : Time trace of epidemic evolution showing unimodal solution. We display 

cumulative counters such as caseload and vaccinee count as lines associated with 

the right-hand y-axis and the weekly case counts or epidemiological curve (epi-curve) 

as bars associated with the left-hand y-axis. We have scaled down the weekly counts 

by a factor of 7 so that the envelope of the bars coincides with the time derivative of 

the cumulative cases. The symbol ‘k’ denotes thousand and ‘L’ hundred thousand. 

 

With 60 percent efficacy on the other hand, the outbreak ends at 908 days 

with total 44,000 cases and a vaccination fault ratio of 8·9 percent. The 

evolution is shown in Figure S2 below. 

 

 

 

 



 
17 

 

 

Figure S2: Time trace of epidemic evolution showing bimodal solution. We display 

cumulative counters such as caseload and vaccinee count as lines associated with 

the right-hand y-axis and the weekly case counts or epidemiological curve (epi-curve) 

as bars associated with the left-hand y-axis. We have scaled down the weekly counts 

by a factor of 7 so that the envelope of the bars coincides with the time derivative of 

the cumulative cases. The symbol ‘k’ denotes thousand and ‘L’ hundred thousand. 

 

We see that the general trends of unimodal elimination and bimodal long-run 

epidemic remain the same. In the unstructured model, the overall durations 

and caseloads are less than in the structured model, which is very plausible 

since the latter model includes a class (minors) who have high interaction 

rates but are ineligible for the vaccine. 

As a final comparison, we repeat the plot of Figure 2, top panel (caseload and 

duration vs efficacy for Interaction Mode 1 with the rogue strain) using the 

unstructured model instead of the structured one. We show the result in 

Figure S3.  
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Figure S3 : Caseload (left-hand y-axis) and duration (right-hand y-axis) as a function 

of vaccine efficacy for one combination of interaction mode and viral strain. The jump 

in the curves corresponds to a transition from a unimodal to a bimodal solution profile. 

The symbol ‘k’ denotes thousand and ‘L’ hundred thousand. 

 

Once again, there is a sharp change in the curve when the unimodal solution 

changes to the bimodal one; the cutoff point reduces from 78 percent in 

Figure 2 to 73 percent in Figure S3, consistent with the simplifications in the 

model. As we have mentioned in the Article proper, we have taken minors to 

be as susceptible and transmissible as adults, ignoring evidence [32] which 

suggests that this might not be true. If minors do have lower susceptibility and 

transmissibility, then the actual case counts will be lower than the model 

predictions. 

Overall, the comparison between the unstructured and structured models 

shows that the predictions remain generally similar in both situations, with 

the differences lying in the details. This convinces us that further refinement 

in the structuring or small changes in parameter values are not going to have 

a significant impact. During future refinement of the model, one further 

feature which can be taken into account is interaction-structuring. This 

factors in that some people such as shopkeepers, bankers and bus conductors 

are forced to interact with dozens every day for professional reasons while 

others like researchers who work on modeling studies lead much more 

reclusive lives (especially in the present situation). Preferentially vaccinating 

people of the former category, a strategy considered in Refs. [10-13], can lead 

to significant gains in duration and caseload. 
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Vaccine hesitancy : This is a phenomenon which our model does not account 

for explicitly. However, in most of the successful runs in Table 1, we can see 

that transmission is significantly reducing within about 250 days, when about 

1,50,000 vaccines have been administered. This amounts to approximately 

2/3 of the eligible population, so it automatically allows scope for a 

considerable amount of hesitancy. Even if hesitancy causes the vaccination 

drive to stop when transmission is reduced but not fully eliminated, the 

epidemic will continue on a downward spiral so long as the restrictions on 

non-vaccinees are kept in place. Moreover, the disparity in social lives of the 

vaccinees and non-vaccinees should cause many of the hesitant people to 

capitulate. Hence, vaccine hesitancy should not be too great a factor affecting 

the vaccine-assisted elimination of the disease. 

---- o ---- 

 

§3  SOCIOECONOMIC AND POLICY ASPECTS 

With an effective vaccine, selective relaxation appears to be a quick and 

surefire path to elimination of COVID-19 in time while achieving maximum 

socioeconomic recovery. This process however may cause negative emotions 

between people who get vaccinated earlier and those who get vaccinated 

later. To the largest extent, there is nothing to be done about this rift – while 

vaccine allocation policies can come up with a priority order which 

maximizes the common good, it will be inevitable that one healthy young 

well-paid software engineer will get the shots and hence a ticket to freedom 

two months before another healthy young well-paid software engineer. 

The negativity arising from such heterogeneity can be alleviated through a 

public information campaign – the impact of the virus itself is very 

heterogeneous and that is outside our control, so a bit of manmade inequality 

during the endgame phase is also tolerable. This is especially true since 

continuing blanket restrictions until the disease has been eliminated will 

entail tremendous economic losses. Nonetheless, to avoid unhealthy 

competition, employers and universities who arrange for vaccination of 

employees and/or students might wait to initiate the general vaccination 

drive (excluding frontline, high-interaction and high-risk people) until they 

have secured all the requisite doses.  
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During selective relaxation, public health authorities will have to ensure that 

minimal close and unmasked interaction occurs between vaccinees and non-

vaccinees. To facilitate this, vaccinees may be given apparel or badges which 

prominently advertise their status. In situations where physical segregation of 

the two classes is impossible, like shops and restaurants, mask and separation 

requirements will likely need to remain in place for the vaccinees as well. If a 

chain store or eatery has multiple similar outlets in the same city, like 

McDonald’s, it might designate some as vaccinee only with no restrictions 

and others as common spaces with restrictions. It goes without saying that 

vaccinee-only entertainment venues have to immunize their staff before 

admitting customers. 

We are aware that selective relaxation is harder to implement than collective 

relaxation or restriction. This is probably one of the reasons why all the 

modeling studies referred to in the Article proper consider only collective 

interventions. However, with a high efficacy vaccine, the socioeconomic 

gains from selective relaxation are immeasurable while the epidemiological 

gains from collective restriction are trivial. For example, consider a situation 

with 90 percent effective vaccine and consensus viral strain. With Interaction 

Mode 1, we have already seen that the epidemic ends at 306 days and 30,193 

cases. If we instead employ a collective interaction mode where all spreading 

rates are l
ijm  with no h

ijm , then the epidemic runs for 305 days accruing 30,161 

cases. Thus, keeping an average of 90,000 people locked down during the 

vaccination drive would in this case be a “Useless Precaution”.  

A plethora of results supports the assertion that a vaccine with 80 percent or 

higher efficacy can act as the basis for an immunity passport while a vaccine 

with efficacy in the 60s cannot, unless the virus transmission rate is already 

low. Hence, research into development of more efficacious vaccines should 

continue even as the early candidates are administered. The efficacies of 

existing vaccines should also be monitored for socio-demographic deter-

minants if any. For example, if Vaccine A has 90 percent efficacy among 

middlers and 40 percent among seniors while Vaccine B has 70 percent across 

all age groups, then middlers should be given Vaccine A and seniors Vaccine 

B. 
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In conclusion, we look forward to the day when we can get an effective 

vaccine, doff our mask and return to life as we knew it, and we hope that this 

happy day arrives sooner rather than later. 

---- o ---- o ---- o ----      ---- o ---- o ---- o ---- 
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